# Determinant of the Laplacian on a non-compact three-dimensional hyperbolic manifold with finite volume

@article{Bytsenko1996DeterminantOT, title={Determinant of the Laplacian on a non-compact three-dimensional hyperbolic manifold with finite volume}, author={Andrei A. Bytsenko and Guido Cognola and Sergio Zerbini}, journal={Journal of Physics A}, year={1996}, volume={30}, pages={3543-3552} }

The functional determinant of Laplace-type operators on a three-dimensional non-compact hyperbolic manifold with invariant fundamental domain of finite volume is expressed via the Selberg zeta function related to the Picard group .

#### 8 Citations

Regularized Determinants of the Laplacian for cofinite kleinian groups with Finite-Dimensional Unitary Representations

- Mathematics
- 2007

For cofinite Kleinian groups (or equivalently, finite-volume three-dimensional hyperbolic orbifolds) with finite-dimensional unitary representations, we evaluate the regularized determinant of the… Expand

Nonplanar contribution to the effective action in noncommutative flat manifolds

- Physics
- 2002

The nonplanar contribution to the effective action for massless scalar and vector fields on D– dimensional manifold with p compact noncommutative extra dimensions is calculated. The zeta function may… Expand

One-loop effective potential for scalar and vector fields on higher dimensional noncommutative flat manifolds

- Physics
- 2001

The non-planar contribution to the effective potentials for massless scalar and vector quantum field theories on D-dimensional manifold with p compact noncommutative extra dimensions is evaluated by… Expand

Spinors and forms on the ball and the generalized cone

- Mathematics
- 1999

A method is presented, and used, for determining any heat-kernel coefficient for the form-valued Laplacian on theD-ball as an explicit function of dimension and form order. The calculation is… Expand

Effective action for scalar fields and generalized zeta function regularization

- Physics
- 2004

Motivated by the study of quantum fields in a Friedman-Robertson-Walker (FRW) spacetime, the one-loop effective action for a scalar field defined in the ultrastatic manifold $R\times H^3/\Gamma$,… Expand

Orbifold compactification and solutions of M-theory from Milne spaces

- Physics, Mathematics
- 2005

Abstract.In this paper, we consider solutions and spectral functions of M-theory from Milne spaces with extra free dimensions. Conformal deformations to the metric associated with real hyperbolic… Expand

Heat-kernel expansion on noncompact domains and a generalized zeta-function regularization procedure

- Mathematics, Physics
- 2006

Heat-kernel expansion and zeta function regularization are discussed for Laplace-type operators with discrete spectrum in noncompact domains. Since a general theory is lacking, the heat-kernel… Expand

Spectral Analysis and Zeta Determinant on the Deformed Spheres

- Mathematics, Physics
- 2007

We consider a class of singular Riemannian manifolds, the deformed spheres $${S^{N}_{k}}$$ , defined as the classical spheres with a one parameter family g[k] of singular Riemannian structures, that… Expand

#### References

SHOWING 1-10 OF 74 REFERENCES

The conformal anomaly in N-dimensional space having a hyperbolic spatial section

- Physics
- 1995

The conformal anomaly for spinors and scalars on a N-dimensional hyperbolic space is calculated explicitly, by using zeta-function regularization techniques and the Selberg trace formula. In the case… Expand

On determinants of Laplacians on Riemann surfaces

- Mathematics
- 1986

Determinants of Laplacians on tensors and spinors of arbitrary weights on compact hyperbolic Riemann surfaces are computed in terms of values of Selberg zeta functions at half integer points.

The conformal anomaly in N‐dimensional spaces having a hyperbolic spatial section

- Physics
- 1995

The conformal anomaly for spinors and scalars on an N‐dimensional hyperbolic space is calculated explicitly, by using zeta‐function regularization techniques and the Selberg trace formula. In the… Expand

Vacuum energy for 3+1 dimensional space‐time with compact hyperbolic spatial part

- Physics
- 1992

The vacuum energy for a massless scalar field defined on a hyperbolic manifold H3/Γ is evaluated using zeta‐function and heat kernel regularization techniques and Selberg trace formula for cocompact… Expand

Determinants of Laplace-like operators on Riemann surfaces

- Mathematics
- 1990

We calculate determinants of second order partial differential operators defined on Riemann surfaces of genus greater than one using a relation between Selberg's zeta function and functional… Expand

Determinants of Laplacians

- Mathematics
- 1987

The determinant of the Laplacian on spinor fields on a Riemann surface is evaluated in terms of the value of the Selberg zeta function at the middle of the critical strip. A key role in deriving this… Expand

SELF-INTERACTING SCALAR FIELDS ON SPACE-TIME WITH COMPACT HYPERBOLIC SPATIAL PART

- Physics
- 1993

We calculate the one-loop effective potential of a self-interacting scalar field on the space-time of the form ℝ2×H2/Γ. The Selberg trace formula associated with a co-compact discrete group Γ in… Expand

Heat-Kernels and functional determinants on the generalized cone

- Mathematics
- 1996

We consider zeta functions and heat-kernel expansions on the bounded, generalized cone in arbitrary dimensions using an improved calculational technique. The specific case of a global monopole is… Expand

Determinants of Laplacians on surfaces of finite volume

- Physics, Mathematics
- 1988

AbstractDeterminants of the Laplace and other elliptic operators on compact manifolds have been an object of study for many years (see [MP, RS, Vor]). Up until now, however, the theory of… Expand

Zeta function regularization of path integrals in curved spacetime

- Mathematics
- 1977

This paper describes a technique for regularizing quadratic path integrals on a curved background spacetime. One forms a generalized zeta function from the eigenvalues of the differential operator… Expand